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Numerical solution of the heat conduction problem for a massive cylin-

der with allowance for heat transfer by radiation at the cylinder sur-
face and for the furnace time lag is considered.

Two problems of optimal control of heating of large
pieces of metal were posed in [1]. The development
of numerical methods of solution of these problems
made it necessary to solve the heat conduction equa-
tion with allowance for radiative heat transfer, heater
time lags, and the temperature dependences of the
thermophysical parameters.

Methods involving explicit net schemes for the ap-
proximation of the heat conduction equation [2— 4]}
could not be used because of the prohibitively large
computer times involved. An acceptable solving al-
gorithm was then constructed on the basis of the well-
known sweep method [ 3].

Let us consider the problem of heating of a long
cylinder with radiative and convective heat transfer
at its surface. The heat conduction equation in cylin-
drical coordinates is
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the initial condition is
T (p, 0) =Ty (o) 2)

and the boundary condition at the surface
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Let the furnace temperature T be related to the func-

tion of time u(r) [which describes either the position

of the gate through which fuel is fed into the operating

space of the furnace or the applied electrical power

in the case of an electric surface] by the differential

equation
dar
d—ri = -0y (Tg' - T;ur) — 0y (T — Toyr) +

+ 0 (P —T¢) + ou (1) 4y

under the initial condition
T; () =Tt (5)

Equation (4) was obtained by considering the elemen-
tary thermal balances in the system, i.e., those be-
tween the heated body, the furnace, and the medium.
System (1) —(5) describes, for example, the heating
of a cylindrical specimen in anelectric muffle furnace

or the heating of a cylindrical ingot in a flame fur-
nace of the chamber type.

a 7 b
l 7. F
-f 'a /! 2 3 M1 QM
Z

Fig. 1. Nodes of the net domain along the radius
of the heated cylinder (a = axis; b = surface).

To solve the problem numerically we use an im-
plicit net scheme [4] for system (1) — (5). The pro-
cess time is broken up into (generally unequal) in-
tervals A7. As the computational net it is conve-
nient to choose a set of points with the coordinates
Pm = mAp, where Ap =R/(M-1.5); M is an integer,
andm=20,1, 2, ..., M.

The point with the number M lies outside the cylin-
der and is fictitious (Fig. 1). The following relations
must be fulfilled at each instant for the points m =
1,2,..., M— 1:
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In order to obtain the net equation for the zero node

of the net (the cylinder axis) we take the limit as
p — 0 in (4) and make use of the symmetry of the tem-
perature distribution in the cylinder, i.e., of the fact
that Ty = T-1. This yields the following relationship
between Ty, and Ty [4]:
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System (6), (7) contains M equations and M + 1
unknowns., We obtain the other required equations
from boundary condition (3) and furnace equation (4)
which are sufficiently well approximated by the fol-
lowing relations:
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where we assume that TE} 1= (TK™1 + Tlﬁf}j)/ 2.
System of (M + 2) equations (6)—(9) contains (M + 2)
unknowns Thk*1, TK¥1, ..., Tk¥1, Tk™1. we shall
omit the superseript (k + 1) from now on, so that
TK*1 = T, . Following the scheme of the sweep
method described in [3], we transform Egs. (6) and
(7) into

Ty = Xy Trar + Ymass
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Here
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and the coefficients x; , ,» Ym+im=1,2,...,M~1)
are given by the following recursion formulas:
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Making use of the last equation of (10), we elim-
inate the unknown Tpj—4 from Eqs. (8) and (9),
which after some simple transformations become
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We can now solve our system as follows, Com-
puting the coefficients %y, y1, @y, bm, Cm, dm(m=
=1,2,...,M— 1) from formulas (11), (13)—(16), we
obtain the sweep coefficients x5 ... Xp3 ¥2 ... yp i
accordance with (12), and, solving system (17), de-
termine Tlﬁl, Tlf<+1.

We then use formula (10) to find the temperature
distributions at (k +1) instants, computing Ty, .
..., Ty T, successively.

Computations according to this scheme are always
correct, since the error present in yy, and T, is
multiplied in the course of computations by a coeffi-
cient ismaller than unity in absolute value [3].

The most vulnerable point of the described scheme
is the solution of system (17), which generally can
have four pairs of distinct roots. We tested three
methods of solving system (17): the Newton method,
the iteration method, and Seidel's method [6]. The
second and third of these methods afforded good con-
vergence to the required solution in all of the exam-
ples computed. The iterative solution of system (17)
by Seidel's method, which we shall consider because of
its more rapid convergence, was based on the formulas

f1(Tw, Tf) =a, [T‘—(l +xMTM;}- yM) ]+

Ti' = af, (Tf\rh Ti-H) + a
TF" = byfy (T, TE) + by, (20)

where i is the number of the iteration. The computa-
tions were terminated upon simultaneous fulfillment of
the conditions ITf+ - Tfl €, lT1 1 Tﬁ\/[' = gy all
of the computations with g = = 10-* requlred from three
to ten steps of the iteration process before attainment
of the required degree of accuracy.

As an example we present the results obtained for
the heating of a foam fireclay cylinder in a cylindri-
cal electric muffle furnace. The thermophysical
parameters were as follows: c¢(T) = 1.163(0.2080 +
+0.0001T) W/kg - degree; A(T) = 1.163(0.6100 +
+ 0.0006T) W/m - degree; v = 1800 kg/m?; o =
=0.314 - 1077; 3 = 0.630 - 1078; p =y = 0; a5 =
=6.70; xg= 8120; R=0.022 m; 7y = 0.25 hr; T is
the temperature, °K.

Figure 2 shows the function u(r) and also the theo-
retically determined temperatures at the axis and sur-
faces of the cylinder and the furnace temperature.
The computations were carried out for Ar = 1073 hr;
Ap =10 m;2 - 1073

The errors were estimated by the Runge method
based on a comparison of the theoretical results ob-
tained for differing numbers of layers in the net do-
main [5]. The error eM; admitted in computing with
an M;-layer net is given by the formula
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Fig. 2. Theoretical results for a foam fireclay cylin-
der heated in a cylindrical electric furnace (u(r) is
the electric furnace power as a function of time ex-
pressed in arbitrary units}. DTg W) Tguys 1D Togge
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where Ty, and Ty, are the temperatures at some
node of the net for M; and M, layers, respectively.

Our computations for 10 and 20 layers indicated
that the error for M = 10 was not more than 0.5° over
the entire computed time interval.

Computations by our method are stable for prac-
tically all A7. This makes it suitable for the coustruc-
tion of fast computer algorithms for solving the heat
conduction problem. Analogous procedures can be
used to compute the symmetric heating of a slab,
sphere, and orthogonal parallelepiped.

NOTATION

T(p, 7) is the temperature distribution in the cylin-
der; Tgyy 2nd Ty are the body surface and furnace tem-
peratures, respectively; A(T), ¢(T) and v are the ther-
mal conductivity, specific heat, and density of the mate-
rial; 7 is the time; 7y isthereciprocal heatingtime;

R is the cylinder radius; oy, o2, a3, @y o5 and ag

are certain constants characterizing heattransfer in the
"furnace-heated body" system; Ap is the distance be-
tween the nodes of the computation net; m =0, 1, ...

... M are the node numbers of the computation net;
k=1, 2, ..., Nare the numbers of the computation
time intervals; T,% is the initial furnace temperature;
& is the temperature of the medium around the fur-
nace; Tpyig is the temperature at the cylinder axis.
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